85 research outputs found

    Harnack inequality and regularity for degenerate quasilinear elliptic equations

    Full text link
    We prove Harnack inequality and local regularity results for weak solutions of a quasilinear degenerate equation in divergence form under natural growth conditions. The degeneracy is given by a suitable power of a strong AA_\infty weight. Regularity results are achieved under minimal assumptions on the coefficients and, as an application, we prove C1,αC^{1,\alpha} local estimates for solutions of a degenerate equation in non divergence form

    miRNA-126 Orchestrates an Oncogenic Program in B Cell Precursor Acute Lymphoblastic Leukemia

    Get PDF
    MicroRNA (miRNA)-126 is a known regulator of hematopoietic stem cell quiescence. We engineered murine hematopoiesis to express miRNA-126 across all differentiation stages. Thirty percent of mice developed monoclonal B cell leukemia, which was prevented or regressed when a tetracycline-repressible miRNA-126 cassette was switched off. Regression was accompanied by upregulation of cell-cycle regulators and B cell differentiation genes, and downregulation of oncogenic signaling pathways. Expression of dominant-negative p53 delayed blast clearance upon miRNA-126 switch-off, highlighting the relevance of p53 inhibition in miRNA-126 addiction. Forced miRNA-126 expression in mouse and human progenitors reduced p53 transcriptional activity through regulation of multiple p53-related targets. miRNA-126 is highly expressed in a subset of human B-ALL, and antagonizing miRNA-126 in ALL xenograft models triggered apoptosis and reduced disease burden

    Gathering dust : A galaxy-wide study of dust emission from cloud complexes in NGC 300

    Get PDF
    © 2018 ESO. Reproduced with permission from Astronomy & Astrophysics. Content in the UH Research Archive is made available for personal research, educational, and non-commercial purposes only. Unless otherwise stated, all content is protected by copyright, and in the absence of an open license, permissions for further re-use should be sought from the publisher, the author, or other copyright holder.Aims. We use multi-band observations by the Herschel Space Observatory to study the dust emission properties of the nearby spiral galaxy NGC 300. We compile a first catalogue of the population of giant dust clouds (GDCs) in NGC 300, including temperature and mass estimates, and give an estimate of the total dust mass of the galaxy. Methods. We carried out source detection with the multiwavelength source extraction algorithm getsources. We calculated physical properties, including mass and temperature, of the GDCs from five-band Herschel PACS and SPIRE observations from 100 to 500 μm; the final size and mass estimates are based on the observations at 250 μm that have an effective spatial resolution of ~170 pc. We correlated our final catalogue of GDCs to pre-existing catalogues of HII regions to infer the number of GDCs associated with high-mass star formation and determined the Hα emission of the GDCs. Results. Our final catalogue of GDCs includes 146 sources, 90 of which are associated with known HII regions. We find that the dust masses of the GDCs are completely dominated by the cold dust component and range from ~1.1 × 10 3 to 1.4 × 10 4 M. The GDCs have effective temperatures of ~13-23 K and show a distinct cold dust effective temperature gradient from the centre towards the outer parts of the stellar disk. We find that the population of GDCs in our catalogue constitutes ~16% of the total dust mass of NGC 300, which we estimate to be about 5.4 × 10 6 M. At least about 87% of our GDCs have a high enough average dust mass surface density to provide sufficient shielding to harbour molecular clouds. We compare our results to previous pointed molecular gas observations in NGC 300 and results from other nearby galaxies and also conclude that it is very likely that most of our GDCs are associated with complexes of giant molecular clouds.Peer reviewe

    JCMT POL-2 and BISTRO Survey Observations of Magnetic Fields in the L1689 Molecular Cloud

    Get PDF
    We present 850 μm polarization observations of the L1689 molecular cloud, part of the nearby Ophiuchus molecular cloud complex, taken with the POL-2 polarimeter on the James Clerk Maxwell Telescope (JCMT). We observe three regions of L1689: the clump L1689N which houses the IRAS 16293-2433 protostellar system, the starless clump SMM-16, and the starless core L1689B. We use the Davis–Chandrasekhar–Fermi method to estimate plane-of-sky field strengths of 366 ± 55 μG in L1689N, 284 ± 34 μG in SMM-16, and 72 ± 33 μG in L1689B, for our fiducial value of dust opacity. These values indicate that all three regions are likely to be magnetically transcritical with sub-Alfvénic turbulence. In all three regions, the inferred mean magnetic field direction is approximately perpendicular to the local filament direction identified in Herschel Space Telescope observations. The core-scale field morphologies for L1689N and L1689B are consistent with the cloud-scale field morphology measured by the Planck Space Observatory, suggesting that material can flow freely from large to small scales for these sources. Based on these magnetic field measurements, we posit that accretion from the cloud onto L1689N and L1689B may be magnetically regulated. However, in SMM-16, the clump-scale field is nearly perpendicular to the field seen on cloud scales by Planck, suggesting that it may be unable to efficiently accrete further material from its surroundings

    The JCMT BISTRO-2 Survey: The Magnetic Field in the Center of the Rosette Molecular Cloud

    Get PDF
    We present the first 850 μm polarization observations in the most active star-forming site of the Rosette Molecular Cloud (d ~ 1.6 kpc) in the wall of the Rosette Nebula, imaged with the SCUBA-2/POL-2 instruments of the James Clerk Maxwell telescope, as part of the B-Fields In Star-forming Region Observations 2 (BISTRO-2) survey. From the POL-2 data we find that the polarization fraction decreases with the 850 μm continuum intensity with α = 0.49 ± 0.08 in the p ∝ I−α relation, which suggests that some fraction of the dust grains remain aligned at high densities. The north of our 850 μm image reveals a "gemstone ring" morphology, which is a ~1 pc diameter ring-like structure with extended emission in the "head" to the southwest. We hypothesize that it might have been blown by feedback in its interior, while the B-field is parallel to its circumference in most places. In the south of our SCUBA-2 field the clumps are apparently connected with filaments that follow infrared dark clouds. Here, the POL-2 magnetic field orientations appear bimodal with respect to the large-scale Planck field. The mass of our effective mapped area is ~174 M⊙, which we calculate from 850 μm flux densities. We compare our results with masses from large-scale emission-subtracted Herschel 250 μm data and find agreement within 30%. We estimate the plane-of-sky B-field strength in one typical subregion using the Davis–Chandrasekhar–Fermi technique and find 80 ± 30 μG toward a clump and its outskirts. The estimated mass-to-flux ratio of λ = 2.3 ± 1.0 suggests that the B-field is not sufficiently strong to prevent gravitational collapse in this subregion

    The JCMT BISTRO Survey: Evidence for Pinched Magnetic Fields in Quiescent Filaments of NGC 1333

    Get PDF
    We investigate the internal 3D magnetic structure of dense interstellar filaments within NGC 1333 using polarization data at 850 μm from the B-fields In STar-forming Region Observations survey at the James Clerk Maxwell Telescope. Theoretical models predict that the magnetic field lines in a filament will tend to be dragged radially inward (i.e., pinched) toward the central axis due to the filament's self-gravity. We study the cross-sectional profiles of the total intensity (I) and polarized intensity (PI) of dust emission in four segments of filaments unaffected by local star formation that are expected to retain a pristine magnetic field structure. We find that the filaments' FWHMs in PI are not the same as those in I, with two segments being appreciably narrower in PI (FWHM ratio ≃0.7–0.8) and one segment being wider (FWHM ratio ≃1.3). The filament profiles of the polarization fraction (P) do not show a minimum at the spine of the filament, which is not in line with an anticorrelation between P and I normally seen in molecular clouds and protostellar cores. Dust grain alignment variation with density cannot reproduce the observed P distribution. We demonstrate numerically that the I and PI cross-sectional profiles of filaments in magnetohydrostatic equilibrium will have differing relative widths depending on the viewing angle. The observed variations of FWHM ratios in NGC 1333 are therefore consistent with models of pinched magnetic field structures inside filaments, especially if they are magnetically near-critical or supercritical

    JINGLE – IV. Dust, H I gas and metal scaling laws in the local Universe

    Get PDF
    Scaling laws of dust, Hi gas and metal mass with stellar mass, specific star formation rate and metallicity are crucial to our understanding of the buildup of galaxies through their enrichment with metals and dust. In this work, we analyse how the dust and metal content varies with specific gas mass (MHI/M?) across a diverse sample of 423 nearby galaxies. The observed trends are interpreted with a set of Dust and Element evolUtion modelS (DEUS) – including stellar dust production, grain growth, and dust destruction – within a Bayesian framework to enable a rigorous search of the multi-dimensional parameter space. We find that these scaling laws for galaxies with −1.0 . logMHI/M? . 0 can be reproduced using closed-box models with high fractions (37-89%) of supernova dust surviving a reverse shock, relatively low grain growth efficiencies (=30-40), and long dust lifetimes (1-2Gyr). The models have present-day dust masses with similar contributions from stellar sources (50-80%) and grain growth (20-50%). Over the entire lifetime of these galaxies, the contribution from stardust (>90%) outweighs the fraction of dust grown in the interstellar medium (<10%). Our results provide an alternative for the chemical evolution models that require extremely low supernova dust production efficiencies and short grain growth timescales to reproduce local scaling laws, and could help solving the conundrum on whether or not grains can grow efficiently in the interstellar medium

    Electronic and paper versions of a faces pain intensity scale: concordance and preference in hospitalized children

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Assessment of pain in children is an important aspect of pain management and can be performed by observational methods or by self-assessment. The Faces Pain Scale-Revised (FPS-R) is a self-report tool which has strong positive correlations with other well established self-report pain intensity measures. It has been recommended for measuring pain intensity in school-aged children (4 years and older). The objective of this study is to compare the concordance and the preference for two versions, electronic and paper, of the FPS-R, and to determine whether an electronic version of the FPS-R can be used by children aged 4 and older.</p> <p>Methods</p> <p>The study is an observational, multicenter, randomized, cross-over, controlled, open trial. Medical and surgical patients in two pediatric hospitals (N = 202, age 4-12 years, mean age 8.3 years, 58% male) provided self-reports of their present pain using the FPS-R on a personal digital assistant (PDA) and on a paper version. Paper and electronic versions of the FPS-R were administered by a nurse in a randomized order: half the patients were given the PDA version first and the other half the paper version first. The time between the administrations was planned to be less than 30 minutes but not simultaneous. Two hundred and thirty-seven patients were enrolled; 35 were excluded from analysis because of misunderstanding of instructions or abnormal time between the two assessments.</p> <p>Results</p> <p>Final population for analysis comprised 202 children. The overall weighted Kappa was 0.846 (95%CI: 0.795; 0.896) and the Spearman correlation between scores on the two versions was r<sub>s </sub>= 0.911 (p < 0.0001). The mean difference of pain scores was less than 0.1 out of 10, which was neither statistically nor clinically significant; 83.2% of children chose the same face on both versions of the FPS-R. Preference was not modified by order, sex, age, hospitalization unit (medical or surgical units), or previous analgesics. The PDA was preferred by 87.4% of the children who expressed a preference.</p> <p>Conclusion</p> <p>The electronic version of the FPS-R can be recommended for use with children aged 4 to 12, either in clinical trials or in hospitals to monitor pain intensity.</p

    JINGLE, a JCMT legacy survey of dust and gas for galaxy evolution studies: II. SCUBA-2 850 μm data reduction and dust flux density catalogues

    Get PDF
    We present the SCUBA-2 850μm component of JINGLE, the new JCMT large survey for dust and gas in nearby galaxies, which with 193 galaxies is the largest targeted survey of nearby galaxies at 850 μm. We provide details of our SCUBA-2 data reduction pipeline, optimized for slightly extended sources, and including a calibration model adjusted to match conventions used in other far-infrared (FIR) data. We measure total integrated fluxes for the entire JINGLE sample in 10 infrared/submillimetre bands, including all WISE, Herschel-PACS, Herschel-SPIRE, and SCUBA-2 850 μm maps, statistically accounting for the contamination by CO(J = 3-2) in the 850 μm band. Of our initial sample of 193 galaxies, 191 are detected at 250 μm with a ≥5σ significance. In the SCUBA-2 850 μm band we detect 126 galaxies with ≥3σ significance. The distribution of the JINGLE galaxies in FIR/sub-millimetre colour-colour plots reveals that the sample is not well fit by single modified-blackbody models that assume a single dust-emissivity index (β). Instead, our new 850 μm data suggest either that a large fraction of our objects require β < 1.5, or that a model allowing for an excess of sub-mm emission (e.g. a broken dust emissivity law, or a very cold dust component ≲10 K) is required. We provide relations to convert FIR colours to dust temperature and β for JINGLE-like galaxies. For JINGLE the FIR colours correlate more strongly with star-formation rate surface-density rather than the stellar surface-density, suggesting heating of dust is greater due to younger rather than older stellar-populations, consistent with the low proportion of early-type galaxies in the sample

    Dust polarized emission observations of NGC 6334: BISTRO reveals the details of the complex but organized magnetic field structure of the high-mass star-forming hub-filament network

    Get PDF
    Context. Molecular filaments and hubs have received special attention recently thanks to new studies showing their key role in star formation. While the (column) density and velocity structures of both filaments and hubs have been carefully studied, their magnetic field (B-field) properties have yet to be characterized. Consequently, the role of B-fields in the formation and evolution of hub-filament systems is not well constrained. Aims. We aim to understand the role of the B-field and its interplay with turbulence and gravity in the dynamical evolution of the NGC 6334 filament network that harbours cluster-forming hubs and high-mass star formation. Methods. We present new observations of the dust polarized emission at 850 μm toward the 2 pc × 10 pc map of NGC 6334 at a spatial resolution of 0.09 pc obtained with the James Clerk Maxwell Telescope (JCMT) as part of the B-field In STar-forming Region Observations (BISTRO) survey. We study the distribution and dispersion of the polarized intensity (PI), the polarization fraction (PF), and the plane-of-The-sky B-field angle (χB_POS) toward the whole region, along the 10 pc-long ridge and along the sub-filaments connected to the ridge and the hubs. We derived the power spectra of the intensity and χBPOS along the ridge crest and compared them with the results obtained from simulated filaments. Results. The observations span 3 orders of magnitude in Stokes I and PI and 2 orders of magnitude in PF (from 0.2 to 20%). A large scatter in PI and PF is observed for a given value of I. Our analyses show a complex B-field structure when observed over the whole region ( 10 pc); however, at smaller scales (1 pc), χBPOS varies coherently along the crests of the filament network. The observed power spectrum of χBPOS can be well represented with a power law function with a slope of-1.33 ± 0.23, which is 20% shallower than that of I. We find that this result is compatible with the properties of simulated filaments and may indicate the physical processes at play in the formation and evolution of star-forming filaments. Along the sub-filaments, χBPOS rotates frombeing mostly perpendicular or randomly oriented with respect to the crests to mostly parallel as the sub-filaments merge with the ridge and hubs. This variation of the B-field structure along the sub-filaments may be tracing local velocity flows of infalling matter in the ridge and hubs. Our analysis also suggests a variation in the energy balance along the crests of these sub-filaments, from magnetically critical or supercritical at their far ends to magnetically subcritical near the ridge and hubs. We also detect an increase in PF toward the high-column density (NH2 â 1023 cm-2) star cluster-forming hubs. These latter large PF values may be explained by the increase in grain alignment efficiency due to stellar radiation from the newborn stars, combined with an ordered B-field structure. Conclusions. These observational results reveal for the first time the characteristics of the small-scale (down to 0.1 pc) B-field structure of a 10 pc-long hub-filament system. Our analyses show variations in the polarization properties along the sub-filaments that may be tracing the evolution of their physical properties during their interaction with the ridge and hubs. We also detect an impact of feedback from young high-mass stars on the local B-field structure and the polarization properties, which could put constraints on possible models for dust grain alignment and provide important hints as to the interplay between the star formation activity and interstellar B-fields
    corecore